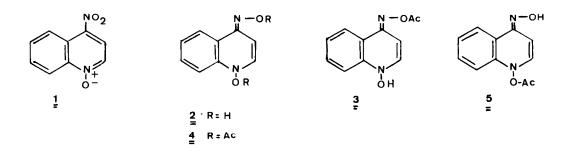
1-ACETOXY-4-HYDROXYIMINO-1,4-DIHYDROQUINOLINE, A REACTIVE INTERMEDIATE DERIVED FROM THE POTENT CARCINOGEN 4-NITROQUINOLINE N-OXIDE

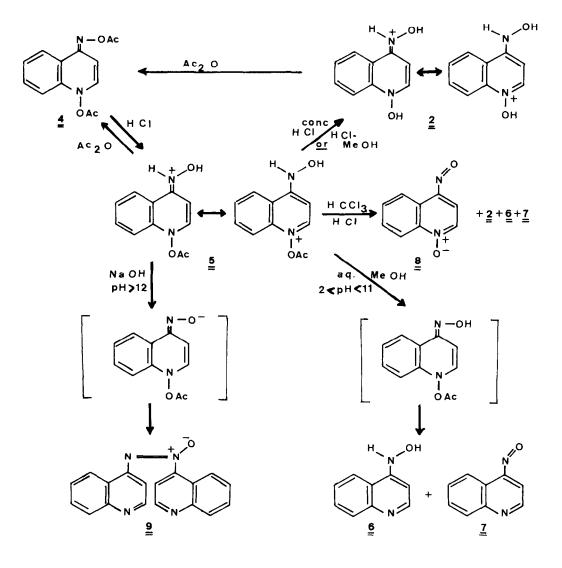
Martine DEMEUNYNCK, Marie France LHOMME and Jean LHOMME


Laboratoire de Chimie Organique Biologique, ERA CNRS 827 Université de LILLE I - 59655 Villeneuve d'Ascq Cedex - France

Summary :

The title compound, a new monoester of the carcinogenic metabolite 4-hydroxyaminoquinoline 1-oxide, has been prepared as its crystalline hydrochloride and its decomposition in acidic and basic media examined.

4-Nitroquinoline N-oxide (4-NQO) $\underline{1}$ is a synthetic carcinogen whose chemistry and biology have been extensively studied by Japanese workers¹. Its metabolic transformation is known to involve reduction to 4-hydroxyaminoquinoline 1-oxide (4-HAQO), existing largely² as the tautomer $\underline{2}$, which is subsequently activated to a reactive "ultimate" derivative which is able to bind covalently to nucleic acids. The mono- and di-acetates $\underline{3}$ and $\underline{4}$ have been considered as models for this ultimate carcinogen. The diacetate $\underline{4}$ is a very unstable³ compound which is obtained by acetylation⁴ (Ac₂O/AcOH) of 4-HAQO $\underline{2}$. The monoacetate $\underline{3}$ has been prepared by Kawazoe et al.² by treating $\underline{4}$ with dithiothreitol in DMSO. It is so reactive that it could not be isolated. This preparative procedure has been used recently by Bailleul et al.⁵ to study the interaction of $\underline{3}$ with DNA and nucleosides.


We now report the isolation and some of the properties of the hydrochloride of the other monoacetyl derivative of 4-HAQO, i.e. 1-acetoxy-4-hydroxyumino-1,4-dihydroquinoline 5, which proves to be just as reactive as the related acetates $\underline{3}$ and $\underline{4}$.

The new monoacetate $\frac{5}{2}$ was obtained as its hydrochloride by selective cleavage of the oxime acetate function of diacetate $\frac{4}{2}$ by HCl. The white powder was assigned the structure $\frac{5}{2}$ on the basis of its chemical reactions and spectroscopic data⁶. The fact that compound $\frac{5}{2}$ possesses the 4-HAQO skeleton $\frac{2}{2}$ and that it corresponds to one of the two possible monoacetyl derivatives is indicated by the following reactions :

1/5 could be quantitatively reacetylated to 4 by treatment with Ac₂O. (This was established by the isolation of the reaction product and its identification with authentic 4. The quantitative nature of the reaction was proved by HPLC analysis).

2/5 was hydrolysed to 4-HAQO 2. (This latter compound was identified by its retention time on HPLC and by its reacetylation "in situ" to authentic bis-acetate 4).

Compound $\frac{5}{2}$ is clearly different from its previously described isomer $\frac{3}{2}$, as indicated by spectroscopic data, HPLC analysis and chemical reactivity. Furthermore the simultaneous presence of $\frac{3}{2}$ and $\frac{5}{2}$ during the acid methanolysis of $\frac{4}{2}$ was established by low temperature NMR spectroscopy. Structure $\frac{5}{2}$ can be assigned on this basis alone. It is further confirmed by the spectroscopic data. One absorption at 1825 cm⁻¹, which is indicative of the presence of the acetoxy group at position 1, is visible in the IR spectrum⁷. It corresponds to the high frequency band observed⁸ for diacetyl $\frac{4}{2}$ (1810 and 1760 cm⁻¹). In the NMR spectrum (acidic methanol) the acetate protons are visible at δ 2.60 ppm (peaks at 2.42 in $\frac{4}{2}$)⁶ and the H-2 and H-3 protons appear as doublets at δ 8.65 and 7.05 (J = 8Hz).

Compound $\frac{5}{2}$ is extremely reactive. The crystalline hydrochloride can be kept for a few days in the dark at low temperature under an HCl atmosphere or in suspension in CHCl₃. However on further standing a complex mixture is obtained in which the nitroso derivatives $\frac{7}{2}$ and $\frac{8}{2}$ can be identified^{9,10}, along with the hydroxylamines $\frac{2}{2}$ and $\frac{6}{2}$.

In solution, its behaviour depends strongly on the pH of the medium. In concentrated aqueous hydrochloric acid (or in methanol saturated with dry HCl), it is quantitatively transformed to 4-HAQO $\underline{2}$. In neutral conditions however, in citrate buffer at pH 7, the formation of this compound is no longer observed and a mixture of hydroxylaminoquinoline $\underline{6}$ and nitrosoquinoline $\underline{7}$ is rapidly obtained ($\underline{6}$: 15 %; $\underline{7}$: 60 % at 18°C). The half lifetime of $\underline{5}$ was estimated to be about 2 mn in 50 : 50 CH₃OH-H₂O, pH 7, 15°. Similar behaviour is observed for $\underline{5}$ at all pHs ranging from 2 to 12. In basic conditions, in aqueous sodium hydroxide (pH > 12) there is immediate precipitation of an orange solid which is a complex mixture of quinolinylazoquinoline oxides¹¹ such as $\underline{9}$.

Compound $\frac{5}{2}$ was routinely analysed by HPLC. It gives one sharp peak which does not correspond to the elution of the injected $\frac{5}{2}$ but to the nitroso compound $\frac{7}{2}$, instantly and quantitatively formed on the column^{9,12}.

The monoacetate $\underline{5}$ is a very reactive compound for which various kinds of reactivity have been observed - hydrolysis to $\underline{2}$, elimination of acetic acid to give $\underline{7}$ and redox reactions leading to $\underline{6}$, $\underline{7}$ and $\underline{8}$. Several reaction mechanisms can be envisaged for the two latter processes and analogies can be found in the literature, notably in the carcinogenic purine N-oxide series¹³. The pathways probably involve the protonated, neutral and deprotonated forms of $\underline{5}$ at the different pHs as shown.

Compound $\frac{5}{2}$ is a close derivative of 4-HAQO, $\frac{2}{2}$, a compound which has been demonstrated to be a metabolite of the carcinogenic 4-NQO. We are now investigating the possible reaction of $\frac{5}{2}$ with nucleosides and DNA.

ACKNOWLEDGEMENTS :

We thank the DGRST (Cancerogenèse Chimique - 78.7.2628) and the INSERM (Cancérogenèse Chimique 77.79 109) for financial support and Drs.M.H. LOUCHEUX and J. CARNDUFF for fruitful discussions. NOTES AND REFERENCES

- For a recent Review, see T. Sugimura "Carcinogenesis, Vol 6 : The Nitroquinolines", Ed. Raven Press, New York, 1981.
- 2. Y. Kawazoe, O. Ogawa and G.F. Huang, Tetrahedron, <u>36</u>, 2933 (1980).
 <u>3</u> was also produced when diacetate <u>4</u> was treated with liquid ammonia. It was too sensitive to air oxidation to be purified.
- 3. M. Arakı, Y. Kawazoe and C. Nagata, Chem. Pharm. Bull., 17, 1344 (1969).
- 4. Y. Kawazoe and M. Arakı, Gann, 58, 485 (1967).
- 5. B. Bailleul, S. Galiegue and M.H. Loucheux-Lefebvre, in press.
- 6. $\frac{5}{2}$ (hydrochloride) : mp 118-118.5°C ; IR(KBr) 1825 cm⁻¹ ; NMR (CD₃OD-DC1) & 2.6 (s, 3H, CH₃), 7.05 (d, 1H, J=8Hz, H-3), 8.65 (d, 1H, J=8Hz, H-2), 8.4 (m : 1H), 7.5-8 (m, 3H) ; UV (CH₃OH) λ_{max} 242 (ϵ =21000) 354 nm (ϵ = 11000) ; mass : m/e 219 : M⁺+1 (4) 202 (0.2) 174 (2.9) 160 (31) 144 (58) 129 (49) 128 (100) 117 (34).
- Comparable high frequency absorption reported for N-oxide esters in the purine series. See for example ref. 13.
- 8. M. Enomoto, K. Sato, E.C. Miller and J.A. Miller, Life Sciences, 7, 1025 (1968).
- 9. An authentic sample of the new compound $\underline{7}$ was prepared by Ag_2CO_3 oxidation of $\underline{6}$. This material had mp 82°C (dec) ; NMR (CDCl₃) δ 6.1 (d, 1H, J=4Hz, \underline{H} -3), 7.5-8.5 (m, 3H), 9.11 (d, 1H, J=4Hz, \underline{H} -2), 9.7 (m, 1H, \underline{H} -5) ; U^{*} (CHC'₃) $\lambda_{max} = 242$ ($\epsilon = 20140$) 364 ($\epsilon = 8400$) ; mass : m/e 158 : M⁺ (56.7), 144 (20) 128 (100) 117 (5.5) 101 (95.5).
- 10. R.A. Abramovitch and E.M. Smith, J. Het. Chem., 12, 969 (1975).
- T. Kosuge, H. Zenda and H. Sawanishi, Chem. Pharm. Bull., <u>17</u>, 2389 (1969) and preceding papers.
- 12. The analysis of 5 consequently included, in addition to the HPLC test, a reacetylation reaction of the product to 4 and HPLC examination. This analysis technique was also extended to compounds 2 and 6. HPLC was performed on µBondapak C18 using MeOH : H₂O pH 2.5.
- J.C. Parham and M.A. Templeton, Tetrahedron, <u>36</u>, 709 (1980), and refs there in ; R.A. Mathews and G. Stohrer, Chem. Biol. Interactions, <u>29</u>, 57 (1980).

(Received in France 11 June 1981)